
Temporal Logic Monitoring Rewards via Transducers

Giuseppe De Giacomo , Marco Favorito , Luca Iocchi , Fabio Patrizi , Alessandro Ronca
DIAG, Università di Roma “La Sapienza”, Italy

{degiacomo, favorito, iocchi, patrizi, ronca}@diag.uniroma1.it

Abstract

In Markov Decision Processes (MDPs), rewards are assigned
according to a function of the last state and action. This is
often limiting, when the considered domain is not naturally
Markovian, but becomes so after careful engineering of an
extended state space. The extended states record informa-
tion from the past that is sufficient to assign rewards by look-
ing just at the last state and action. Non-Markovian Reward
Decision Processes (NMRDPs) extend MDPs by allowing
for non-Markovian rewards, which depend on the history of
states and actions. Non-Markovian rewards can be specified
in temporal logics on finite traces such as LTLf /LDLf , with
the great advantage of a higher abstraction and succinctness;
they can then be automatically compiled into an MDP with an
extended state space. We contribute to the techniques to han-
dle temporal rewards and to the solutions to engineer them.
We first present an approach to compiling temporal rewards
which merges the formula automata into a single transducer,
sometimes saving up to an exponential number of states. We
then define monitoring rewards, which add a further level of
abstraction to temporal rewards by adopting the four-valued
conditions of runtime monitoring; we argue that our compila-
tion technique allows for an efficient handling of monitoring
rewards. Finally, we discuss applications to reinforcement
learning.

1 Introduction
In a Markov Decision Process (MDP) (Puterman 1994) the
transition probability function and the reward function are
Markovian, i.e., they depend only on the last state and ac-
tion. However, this limitation does not allow for rewarding
behaviours that extend overtime; alternatively, it requires
to engineer an extended state space where states record
enough information from the past. To overcome such lim-
itations, non-Markovian Reward Decision Processed (NM-
RDP) have been proposed (Bacchus, Boutilier, and Grove
1996; Thiébaux et al. 2006). In particular, the idea is to
encode non-Markovian rewards into an MDP by extending
the state space, with minimality guarantees of the resulting
MDP.

The same idea, with some variations, has been investi-
gated in more recent works. In (Toro Icarte et al. 2018;
Camacho et al. 2019; Toro Icarte et al. 2019), the authors in-
troduce the concept of reward machine, an automata-based
formalism to encode non-Markovian rewards. In (Quint et

al. 2019), formal languages are used to specify soft and hard
constraints on actions, by enforcing constraints on the action
space, called action shaping. In (Alshiekh et al. 2018), an
approach based on temporal logic has been used to monitor
the actions of an agent and to prevent the violation of critical
safety specifications. In (Brafman, De Giacomo, and Patrizi
2018; De Giacomo et al. 2019), rewards are specified in the
temporal logics LTLf /LDLf (De Giacomo and Vardi 2013;
De Giacomo and Vardi 2015; De Giacomo and Vardi 2016).
Here the construction of the extended MDP is based on
the correspondence between such logics and finite-state au-
tomata (Rabin and Scott 1959). Specifically, the extended
MDP is obtained as the synchronous product of a formula’s
automata with the automata underlying the NMRDP. All
of these techniques are examples of how much Knowledge
Representation can be of great help for reward specification.

A crucial property of such techniques is the overhead re-
quired to handle the non-Markovianity. Such overhead is in-
troduced in the original state space to generate the extended
MDP over which the learning is performed. It is desirable
that the overhead is the minimum possible since it affects
the effectiveness of learning algorithms (e.g. the exploration
phase in Reinforcement Learning (Sutton and Barto 2018)).

In this paper, we want to extend the approach in (Brafman,
De Giacomo, and Patrizi 2018) while keeping such overhead
to the minimum. To do so, we merge automata of the various
formulas used for the rewards into a single transducer from
traces to rewards (i.e. outputs a reward for every prefix of
the trace), which encodes all the temporal specifications in a
single finite-state machine. This gives us further opportuni-
ties of minimizations if we do not care from the satisfaction
of which formula a given reward is obtained. Indeed, we
show that by giving up this information, the transducer can
be exponentially (in fact factorially) smaller than the mini-
mal automaton in (Brafman, De Giacomo, and Patrizi 2018),
and never worse in general. Then, inspired by the litera-
ture on monitoring (Bauer, Leucker, and Schallhart 2010;
Ly et al. 2013; De Giacomo et al. 2014), we devise a way of
specifying rewards using LTLf /LDLf which associates re-
ward not to simply the satisfaction of the formula, but to
the four classical monitoring conditions: the formula is tem-
porarily true, temporarily false, permanently true, and per-
manently false. We illustrate the convenience of this kind of
LTLf /LDLf reward specifications and show that these four

conditions can be monitored at no additional cost w.r.t. to
satisfaction only, through the use of transducers. Finally,
we discuss the use of such kind of LTLf /LDLf -based reward
specifications in reinforcement learning of non-Markovian
specifications.

2 Background
MDPs and RL. A Markov Decision Process (MDP)M =
〈S,A, Tr,R〉 contains a set S of states, a set A of actions, a
transition function Tr : S × A → Prob(S) that returns for
every state s and action a a distribution over the next state,
and a reward function R : S × A→ R that specifies the re-
ward (a real value) received by the agent when transitioning
from state s to state s′ by applying action a. We see states
S as truth assignments to a set P of propositional atoms. A
solution to an MDP is a function, called a policy, assigning
an action to each state, possibly with a dependency on past
states and actions. The value of a policy ρ at state s, denoted
vρ(s), is the expected sum of (possibly discounted by a fac-
tor γ, with 0 ≤ γ ≤ 1) rewards when starting at state s and
selecting actions based on ρ. Typically, the MDP is assumed
to start in an initial state s0, so policy optimality is evaluated
w.r.t. vρ(s0). Every MDP has an optimal policy ρ∗. In dis-
counted cumulative settings, there exists an optimal policy
that is Markovian ρ : S → A, i.e., ρ depends only on the
current state, and deterministic (Puterman 1994).

Reinforcement Learning (RL) is the task of learning a
possibly optimal policy, from an initial state s0, on an MDP
where only S and A are known, while Tr and R are not—
see, e.g., (Sutton and Barto 2018).

Automata. A (finite-state) automaton is a computational
model with limited capabilities. It can read input strings in
a given alphabet, it keeps track of its current state among
finitely many, and it can produce output strings. An automa-
ton whose output response is limited to a simple ‘yes’ or
‘no’ is called an acceptor. A more general automaton, ca-
pable of producing strings of symbols as output, is called a
transducer.

The most basic kind of automata are deterministic finite
automata (DFA) (Rabin and Scott 1959). A DFA is a 5-
tuple A = 〈Q,Σ, q0, F, δ〉 where Q is the (non-empty) fi-
nite set of states, Σ is the set of input symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of accepting states,
and δ : Q × Σ → Q is the transition function. The ex-
tended transition function δ∗ of A is δ∗(q, ε) = q and
δ∗(q, wa) = δ(δ∗(q, w), a). Automaton A accepts a word
w if δ∗(q0, w) ∈ F . The language of A, written L(A), is
the set of words that A accepts.

Two fundamental kinds of transducers are Moore ma-
chines and Mealy machines. A Moore machine (Moore
1956) is a tupleMo = 〈Q,Σ,Γ, q0, δ, θ〉 where Q is the set
of states, Σ is the set of the input symbols, Γ is the set of the
output symbols, q0 is the initial state, δ : Q× Σ→ Q is the
transition function, and θ : Q→ Γ is the output function that
maps states to output symbols. The output ofMo on word
a1 . . . an is θ(q0) θ(δ∗(q0, a1)) . . . θ(δ∗(q0, a1, . . . , an)).
A Mealy machine Me (Mealy 1955) is like a Moore ma-
chine except that its output function θ : Q × Σ → Γ

maps transitions to output symbols, instead of
states. Hence the output of Me on word a1 . . . an is
θ(q0, a1) θ(δ∗(q0, a1), a2) . . . θ(δ∗(q0, a1, . . . , an−1), an).
Note that, for a Moore machine and a Mealy machine
performing the same number of transitions, the output of a
Mealy has one symbol less. A Moore/Mealy machine M
corresponds to the transduction function FM : Σ∗ → Γ∗

that maps its input to its output. That is, such machines
translate words on the input alphabet Σ to words on the
output alphabet Γ. It can be shown that Moore machines
and Mealy machines have the same expressivity, that is, for
a Moore machine there exist an equivalent Mealy machine,
and vice versa (Linz 2006).

An important property that we will use in the next sec-
tions is that both DFAs and Moore/Mealy machines can be
minimised, and the resulting minimal automata are unique
(modulo state renaming) for the language they recognise or
the transduction function they represent, respectively.

LTLf /LDLf . The logic LTLf is the classical linear time
logic LTL (Pnueli 1977) interpreted over finite traces, formed
by a finite (instead of infinite, as in LTL) sequence of propo-
sitional interpretations (De Giacomo and Vardi 2013). The
underlying propositional alphabet we consider here is the
one given by the world features. Given a set P of proposi-
tional atoms, LTLf formulas ϕ are defined as follows:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2

where φ is a propositional formula over P , ◦ is the next
operator and U is the until operator. We use the standard
abbreviations: ϕ1 ∨ ϕ2

.
= ¬(¬ϕ1 ∧ ¬ϕ2); eventually as

♦ϕ
.
= true U ϕ; always as �ϕ

.
= ¬♦¬ϕ; weak next

•ϕ .
= ¬◦¬ϕ (note that on finite traces ¬◦ϕ 6≡ ◦¬ϕ); and

last
.
= •false denoting the end of the trace. LTLf is as ex-

pressive as first-order logic over finite traces and star-free
regular expressions.

LDLf is a proper extension of LTLf , which is as expres-
sive as monadic second-order logic over finite traces and
(unrestricted) regular expressions (De Giacomo and Vardi
2013). Here we adopt the version that allows for the empty
trace (Brafman, De Giacomo, and Patrizi 2018). An LDLf
formula ϕ is built as follows:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈%〉ϕ
% ::= φ | ϕ? | %1 + %2 | %1; %2 | %∗

where: tt stands for logical true; φ is a propositional formula
over P; % denotes path expressions, i.e., regular expressions
(RE) over propositional formulas φ with the addition of the
test construct ϕ? typical of Propositional Dynamic Logic
(PDL). We use abbreviations [%]ϕ

.
= ¬〈%〉¬ϕ as in PDL,

ff = ¬tt for false, and end = [true]ff to denote the end
of the trace. Intuitively, 〈%〉ϕ states that, from the current
step in the trace, there exists an execution satisfying the RE
% such that its last step satisfies ϕ, while [%]ϕ states that,
from the current step, all executions satisfying the RE % are
such that their last step satisfies ϕ. Tests are used to insert
into the execution path checks for satisfaction of additional
LDLf formulas.

A remarkable property of LTLf /LDLf is that, for each for-
mula ϕ, we can construct a DFA Aϕ that tracks satisfaction

of ϕ: Aϕ accepts a finite trace π iff π satisfies ϕ. Our results
crucially rely on the existence of such an automaton. How-
ever, this is not unique to LTLf /LDLf . An analogous trans-
formation to automata applies to several other formalisms
for representing temporal specifications over finite traces,
including Past LTL, co-safe LTL, etc.(Bacchus, Boutilier,
and Grove 1996; Thiébaux et al. 2006; Slaney 2005; Gret-
ton 2007; Gretton 2014; Lacerda, Parker, and Hawes 2014;
Lacerda, Parker, and Hawes 2015).

NMRDPs. A non-Markovian reward decision process (NM-
RDP) (Bacchus, Boutilier, and Grove 1996) is a tuple
〈S,A, Tr, R̄〉, where S,A and Tr are as in an MDP (with
each in S being an assignment for propositions P), but the
reward R̄ is a real-valued function over finite state-action
sequences (referred to as traces), i.e., R̄ : (S × A)∗ → R.
Given a (possibly infinite) trace π = 〈s0, a1, . . . , sn−1, an〉,
the value of π is: v(π) =

∑|π|
i=1 R̄(〈π(1), π(2), . . . , π(i)〉),

where π(i) denotes the pair (si−1, ai). In NMRDPs, policies
are also non-Markovian ρ̄ : S∗ → A. Since every policy in-
duces a distribution over the set of possible infinite traces,
we can define the value of a policy ρ̄, given an initial state
s, as: vρ̄(s) = Eπ∼M,ρ̄,sv(π). That is, vρ̄(s) is the expected
value of infinite traces, where the distribution over traces is
defined by the initial state s, the transition function Tr, and
the policy ρ̄.

Specifying a non-Markovian reward function explicitly
is cumbersome and unintuitive, even if only a finite num-
ber of traces are to be rewarded. LTLf /LDLf provides an
intuitive and convenient language for non-Markovian re-
wards (Camacho et al. 2017; Brafman, De Giacomo, and Pa-
trizi 2018). Following (Brafman, De Giacomo, and Patrizi
2018) we can specify R̄ using a set of pairs {(ϕi, ri)}mi=1,
where each ϕi is an LTLf /LDLf formula over the proposi-
tions P that selects the traces to reward, and ri the reward
assigned to those traces. When the current (partial) trace is
π = 〈s0, a1, . . . , sn−1, an〉, the agent receives at sn each
reward ri whose formula ϕi is satisfied by π.

From NMRDPs to MDPs. In (Brafman, De Giacomo,
and Patrizi 2018) it is shown that for any NMRDP M =
〈S,A, Tr, {(ϕi, ri)}mi=1〉, with ϕi being LTLf /LDLf formu-
las, there exists an MDP M ′ = 〈S′, A, Tr′, R′〉 that is
equivalent to M in the sense that the states of M can be
(injectively) mapped into those ofM ′ in such a way that cor-
responding (under the mapping) states yield the same transi-
tion probabilities, and corresponding traces have the same
rewards (Bacchus, Boutilier, and Grove 1996). Denoting
with Aϕi

= 〈Qi, 2P × A, qi0, δi, Fi〉 (notice that S ⊆ 2P

and δi is total) the DFA associated with ϕi, the equivalent
MDP M ′ is as follows:

• S′ = Q1 × · · · ×Qm × S;

• Tr ′ : S′ ×A× S′ → [0, 1] is defined as:

Tr ′(q1, . . . , qm, s, a, q
′
1, . . . , q

′
m, s

′) ={
Tr(s, a, s′) if ∀i : δi(qi, (s, a)) = q′i
0 otherwise;

• R′ : S′ ×A→ R is defined as:

R′(q1, . . . , qm, s, a) =
∑

i:δi(qi,(s,a))∈Fi

ri

Observe that the state space of M ′ is the product of the state
spaces of M and Aϕi , and that the reward R′ is Markovian.
In other words, the (stateful) structure of the LTLf /LDLf for-
mulas ϕi used in the (non-Markovian) reward of M is com-
piled into the states of M ′.
Theorem 1 ((Brafman, De Giacomo, and Patrizi 2018)).
The NMRDP M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉 is equivalent
to the MDP M ′ = 〈S′, A, Tr′, R′〉 defined above.

Actually this theorem can be refined into a stronger
lemma. A policy ρ for an NMRDP M and a policy ρ′

for an equivalent MDP M ′ are equivalent if they guar-
antee the same rewards. Assume M ′ is constructed as
above and let ρ′ be a policy for M ′. Consider a trace
π = 〈s0, a1, s1, . . . , sn−1, an〉 of M and assume it leads
to state sn. Further, let qin be the state of Aϕi on input π.
We define the (non-Markovian) policy ρ̄ equivalent to ρ′ as
ρ̄(s0, . . . , sn) = ρ′(q1

n, . . . , q
m
n , sn). Similarly, given a pol-

icy ρ for M , by just tracking the state of the DFAs Aϕi
, it is

immediate to define the equivalent policy ρ′ for M ′. Hence
we have:
Lemma 1 ((Brafman, De Giacomo, and Patrizi 2018)).
Given an NMRDP M and an equivalent MDP M ′, every
policy ρ′ for M ′ has an equivalent policy ρ̄ for M and vice
versa.

Moreover, as observed by (De Giacomo et al. 2019), it is
possible to do RL over the M ′ equivalent to M . Being M ′
an MDP, this can be done by off-the-shelf RL algorithms
(e.g., Q-learning and SARSA). Of course, neitherM norM ′
are (completely) known to the learning agent, and the trans-
formation is never done explicitly. Rather, during the learn-
ing process, the agent assumes that the underlying model has
the form of M ′ instead of that of M .
Theorem 2 ((De Giacomo et al. 2019)). RL for LTLf /LDLf
rewards over an NMRDP M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉,
with Tr and {(ϕi, ri)}mi=1 hidden to the learning agent can
be reduced to RL over the MDP M ′ = 〈S′, A, Tr′, R′〉 de-
fined above, with Tr′ and R′ hidden to the learning agent.

Runtime Monitoring. We will borrow the four-valued
semantics of runtime monitoring on finite traces (Bauer,
Leucker, and Schallhart 2010; Ly et al. 2013; De Giacomo
et al. 2014). Given an LTLf /LDLf formula ϕ and a trace π,
we say that:
• ϕ is temporarily true in π if π satisfies ϕ and there is a

continuation of π that does not satisfy ϕ, and we write
π |= Jϕ = temp trueK;
• ϕ is temporarily false in π if π does not satisfy ϕ and

there is a continuation of π that satisfies ϕ, and we write
π |= Jϕ = temp falseK;

• ϕ is permanently true in π if π and all its continuations
satisfy ϕ, and we write π |= Jϕ = perm trueK;

• ϕ is permanently false in π if π and all its continuations
do not satisfy ϕ, and we write π |= Jϕ = perm falseK.

3 Reward Transducers
In the literature, several approaches have been proposed to
automatically extend MDPs so to capture non-Markovian or
temporally-extended rewards. The central idea is to extend
states with sufficient information from the past. In (Bacchus,
Boutilier, and Grove 1996; Thiébaux et al. 2006) rewards are
expressed by using variants of LTL, and states are extended
by suitably annotating them exploiting the structure of the
reward formulas. In (Littman 2015; Littman et al. 2017) the
necessity of a declarative mechanism for expressing com-
plex rewards was again brought about to tame the difficulty
of reward engineering in complex systems. In (Brafman, De
Giacomo, and Patrizi 2018) rewards where expressed using
LTLf /LDLf temporal logic on finite traces, which are first
translated into DFAs, and then the extended MDP is ob-
tained as the cross product of such DFAs with the original
MDP—as discussed in Section 2. This approach is applied
to reinforcement learning in (De Giacomo et al. 2019).

In (Toro Icarte et al. 2018; Camacho et al. 2019) the
idea of handling non-Markovian rewards through a finite
machine (as a DFA) is decoupled from where the machine
comes from (e.g., from an LTLf specification) and the focus
becomes the machine itself, called “reward machine”.

In this paper we first focus on reward machines directly as
in (Toro Icarte et al. 2018; Camacho et al. 2019), introducing
the general notion of reward transducers; then later we will
show some advanced way of declaratively specifying such
transducers that extend the ideas in (Bacchus, Boutilier, and
Grove 1996; Thiébaux et al. 2006; Brafman, De Giacomo,
and Patrizi 2018).

In our context, a reward transducer maps MDP traces
of the form π = 〈(s0, a1), (s1, a2), . . . , (sn−1, an)〉 to se-
quences of rewards r1, r2, . . . , rn (i.e. it outputs a reward
for every prefix of the trace).

Definition 1. For states S and actions A, a reward trans-
ducer is a transducer with input alphabet S ×A and output
alphabet R ⊂ R. A Moore (or Mealy) reward machine is a
reward transducer that is a Moore (Mealy) machine.

Thus, we can define any non-Markovian reward function
R̄ as a transduction function and we can implement it as a
transducer. We observe that a temporal specification (ϕ, r)
can be transformed into an equivalent reward transducer.
Indeed, we can transform the associated DFA Aϕ into the
Moore machineMϕ

o = 〈Q, 2P ×A, {0, r}, q0, δ, θo〉 where
Q, q0 and δ are defined as in Aϕ, and θo(q) = 0 if q 6∈ F ,
θo(q) = r otherwise. That is, the Moore machine out-
puts 0 for every prefix that does not satisfy ϕ and outputs
r for every prefix that satisfies it. Analogously we can de-
fine a Mealy machineMϕ

e = 〈Q, 2P × A, {0, r}, q0, δ, θe〉
where everything is defined like in the Moore machine but
θe(q, (s, a)) = r if δ(q, (s, a)) ∈ F , and 0 otherwise.

Sum of Reward Transducers. We now define the sum of
two Moore reward machinesM1

o = 〈Q1,Σ,R1, q10, δ1, θ1〉
and M2

o = 〈Q2,Σ,R2, q20, δ2, θ2〉, which is a Moore re-
ward machine outputting the sum of the rewards of the
two initial machines. Formally, the sum machine M′o =
M1

o +M2
o is 〈Q,Σ,R, q0, δ, θo〉 where:

• Q = Q1 ×Q2;
• R = {r1 + r2 | r1 ∈ R1, r2 ∈ R2};
• q0 = (q10, q20);

• δ = {(q1, q2)
σ−→ (q′1, q

′
2) | ∀i ∈ {1, 2}. qi

σ−→ q′i ∈ δi};
• θo = {(q1, q2) 7→ r1 + r2 | ∀i ∈ {1, 2}. θi(qi) = ri}.
It is a standard cross-product construction, where the output
of each new state is the sum of the outputs of the correspond-
ing old states. As a result of the construction, the transduc-
tion function implemented byM1

o +M2
o is the sum of the

functions ofM1
o andM2

o, i.e., FM1
o+M2

o
= FM1

o
+ FM2

o
.

The sum of two Mealy reward machines is defined very sim-
ilarly to the sum of two Moore reward machines. The only
thing that changes is how the output function is built:
θe = {((q1, q2), σ) 7→ r1+r2 | ∀i ∈ {1, 2}. θi(qi, σ) = ri}.

Direct Sum of Reward Transducers. If the two machines
are basically the same machine except for the output func-
tion, then we can build a sum machine simply by taking the
sum of their output function. In this case we call the two
machines shape-equivalent—a notion inspired by the shape-
equivalence for DFAs in (De Giacomo et al. 2020). Specifi-
cally,M1

o andM2
o are shape-equivalent if differ only in their

output, or in other words have the same states, input alpha-
bet, initial state, and transition function. For such machines,
we can then define the direct sum machine M1

o ⊕M2
o =

〈Q,Σ,R, q0, δ, θ〉 where Q, Σ, q0, and δ are the common
states, input alphabet, initial state, and transition function,
respectively,R is defined as forM1

o⊕M2
o, and θ = θ1 +θ2.

It is again the case that FM1
o⊕M2

o
= FM1

o
+ FM2

o
. When-

ever in the following we take the sum of two machines, we
can instead take their direct sum if we know that they are
shape-equivalent. The same definition applies to the Mealy
reward machines, except that the transition function depends
on a state-symbol pair, rather than just a state.

In Figure 1, we show the Moore reward machines for
the temporal specifications (♦a,+1) and (�b,+2) and their
sum. In Figure 2, we show the equivalent Mealy reward ma-
chines.

4 Extending MDPs via Reward Transducers
Rewarding complex behaviours is a challenging task, and
temporal logic provides the right level of abstraction to
address the problem (Littman 2015; Littman et al. 2017).
This is the philosophy behind NMRDPs with LTLf /LDLf re-
wards (Brafman, De Giacomo, and Patrizi 2018). NMRDPs
can be reduced to MDPs, and hence solved using off-the-
shelf algorithms for MDPs. This comes, however, at the
cost of an extension of the state space, which is required to
keep track of the state of partial satisfaction of the temporal
rewards. Such an extension introduces an overhead which is
necessary to deal with non-Markovianity, but it is a compu-
tational cost for the algorithm that has to solve the resulting
MDP. It is then important to keep such an overhead to a min-
imum.
Definition 2. Given an NMRDP M with state space S and
an equivalent MDP M ′ with state space S′, the state over-
head of M ′ on M is |S′| − |S|.

q0, 0start

q1, 1

¬a

a

true

(a) M1
o

q0, 2start

q1, 0

¬b

b

true

(b) M2
o

q00, 2start

q10, 3

q01, 0

q11, 1

¬a ∧ b

b

¬a

true

a ∧ b

¬a ∧ ¬b

a ∧ ¬b

¬b

a

(c) M′
o = M1

o +M2
o

Figure 1: In Figure (a), the Moore reward machine M1
o for the

temporal specification (♦a,+1). In Figure (b), Moore reward ma-
chine M2

o for the temporal specification (�b,+2). In Figure (c),
the Moore machine of the sum of M1

o and M2
o.

q0start

q1

¬a/0

a/1

true/1

(a) M1
e

q0start

q1

b/1

¬b/0

true/0

(b) M2
e

q00start

q10

q01

q11

¬a ∧ b/2

b/3

¬a/0

true/1
a ∧ b/3

¬a ∧ ¬b/0

a ∧ ¬b/1

¬b/1

a/1

(c) M′
e = M1

e +M2
e

Figure 2: Here we show the same specifications depicted in Fig-
ure1, but implemented as Mealy reward machines. In Figure
(a), the Mealy reward machine M1

e for the temporal specification
(♦a,+1). In Figure (b), Moore reward machine M2

e for the tem-
poral specification (�b,+2). In Figure (c), the Mealy machine of
the sum of M1

e and M2
e.

In this section, we propose a novel construction for the ex-
tended MDP, that achieves a significantly smaller state over-
head by using reward transducers introduced in the previous
section, instead of DFAs, to assign rewards. In particular,
we can define an MDP that plays the same role as the one
described in (Brafman, De Giacomo, and Patrizi 2018), with
the exception that it does not keep track of which formula the
reward comes from. We use a Moore reward machine, which
is the sum of the Moore machines for the single rewards—
rather than the cross product of the DFAs for the reward for-
mulas.

Consider an NMRDP M = 〈S,A, Tr, {(ϕi, ri)}mi=1〉,
and letMi

o be the Moore reward machine for (ϕi, ri). We
define Mo = 〈Qo, 2P × A,Ro, q0, δo, θo〉 as the Moore
reward machine obtained by minimising the sum of all the
other Moore reward machines, i.e.,Mo is the minimum ma-
chine equivalent to M1

o + · · · +Mm
o . We derive the new

MDP Mo = 〈So, A, Tro, Ro〉 as follows:

• So = S ×Qo;

• Tro : So ×A× So → [0, 1] is defined as:

Tro((q, s), a, (q
′, s′)) ={

Tr(s, a, s′) if δo(q, (s, a)) = q′

0 otherwise;

• Ro : So ×A→ R is defined as:

Ro((q, s), a) = θo(δo(q, (s, a)))

We have that Mo is equivalent to M ′ as for Theorem 1, and
hence to M . We formalize this observation in the following
theorem.
Theorem 3. The NMRDP M and the MDP Mo are equiva-
lent.

Proof. We need to prove that Mo is equivalent to M ′, since
the equivalence between M and M ′ is a consequence of
Theorem 1. Notice that, by construction, So is isomorphic
to S′, and so is Tro to Tr′, due to the definition of δ. Fi-
nally, notice that θo(q) =

∑
i θ
i
o(qi), where θio(qi) = ri

when qi ∈ Fi, so Ro is simply a compact representation of
R′.

The minimisation step in the construction above is impor-
tant. Even assuming that the machines Mi

o are minimum,
their sum machine may not be; thus, the minimisation step
is required to minimise the state space of the resulting MDP
Mo, hence the state overhead of Mo on M .

Now that we have defined the extended MDP construction
based on Moore machines we show that such a construction
can significantly reduce the state overhead. In fact, it can
achieve an exponential improvement (in fact, factorial), as
argued in the following theorem.
Theorem 4. For every n ≥ 1, there is an NMRDP M such
that (i) the equivalent MDP M (as in Theorem 1) has state
overhead Ω(n!) on M , and (ii) the equivalent MDP Mo (as
introduced this section) has state overhead O(n) on M .

Proof. Consider a set of propositionsP = {p1, . . . , pn} and
an NMRDP M = 〈2P , {ins, del} × P, T r, {(ϕi, 1)}ni=1}
where each ϕi is of the form:

◦i(¬p1 ∧ · · · ∧ ¬pi−1 ∧ pi ∧ ¬pi+1 ∧ · · · ∧ ¬pn)

and Tr consists of transitions

(s, (ins, p)) 7→ (s ∪ {p}) and (s, (del, p)) 7→ (s \ {p}).
for each p ∈ P and each s ∈ 2P . Intuitively, we can insert
and delete propositions to/from states, and at the i-th step
we get rewarded if pi is true and the other propositions are
false. The minimum DFA for ϕi has Ω(i) states. As a result,
the MDP M ′ has state overhead Ω(n!). Now we argue that
the state overhead of Mo is O(n). A Moore reward machine
Mi

o for (ϕi, 1) has states s0, . . . , si, and a transition from
sj to sj+1 for each j ≤ i− 1 and each input symbol, and it
outputs 0 in all transitions but the last one, where it outputs
1 if it reads {pi}. The minimum reward machineMo equiv-
alent to the sum of the machinesMi

o has states s0, . . . , sn,
and transitions from sj to sj+1 for each j ≤ n− 1 and each
input symbol, with the output at the i-th transition being 1
for input {pi}, and 0 otherwise.

Moreover the approach based on transducers never does
worse than the one based on DFAs.

Theorem 5. For every NMRDPM , the equivalent MDPMo

(as introduced in this section) has state overhead smaller
than or equal to the state overhead of the MDP M ′ (as in
Theorem 1).

Proof. It suffices to notice that in both cases we can build an
extended state space based on the cross product of the states
of automata for the reward formulas.

Considering that our goal is to keep the state overhead
to a minimum, we next focus on Mealy reward machines.
Mealy machines will allow us to save on states, since they
can represent Moore machines using possibly less states
and never more. In particular, we define a construction
that leverages Mealy reward machines, instead of Moore
reward machines. Note that every Moore machine can be
transformed into a Mealy machine by composing its out-
put function with its transition function. Hence, from the
MDPMo = 〈So, A, Tro, Ro〉, we can construct a new MDP
Me = 〈Se, A, Tre, Re〉 where everything is defined as in
Mo except Re : Se ×A→ R that is defined as:

Re((q, s), a) = θe(δo(q, (s, a)))

Theorem 6. The NMRDP M and the MDP Me are equiva-
lent.

Proof. By construction, Me is equivalent to Mo, and by
Theorem 3 and Theorem 1, the thesis follows.

5 Rewards as Temporal Specifications
In this section we argue for the case of the temporal logics
LDLf /LTLf as an appropriate language to specify rewards.
In particular, they capture Markovian rewards without loss
of efficiency (using transducers) and they can be more suc-
cinct.

Capturing Markovian rewards. We start by showing how
any MDP M can be represented as an NMRDP Mnmr with-
out loss of efficiency in terms of number of states. Specif-
ically, we mean that Mnmr has the same states as M , and
Mnmr can be automatically encoded back into an MDP M ′
which has again the same states of the original MDP M .
Consider an MDP M = 〈S,A, Tr,R〉. Such an MDP is
captured by the following NMRDP:

Mnmr = 〈S,A, Tr, {(ϕ(s,a), R(s, a))}s∈S,a∈A〉

where ϕ(s,a) has the form ♦(s∧a∧ last)—note thatR(s, a)
is the Markovian reward when the last state and action are
s and a, respectively. First, we argue that Mnmr correctly
encodes the given MDP M .

Theorem 7. The MDPM and the NMRDPMnmr are equiv-
alent.

Proof. By construction, the non-Markovian rewards depend
only on the last state-action pair, i.e., they are Markovian,
although formalized as non-Markovian. Hence, from a non-
Markovian policy ρ̄, we can build an equivalent Markovian

q0start q1

¬s ∨ ¬a

s ∧ a

s ∧ a

¬s ∨ ¬a

Figure 3: Automaton corresponding to ϕ(s,a) = ♦(s ∧ a ∧ last)

policy ρ by ignoring the history but the last state. Analo-
gously, from ρ we can define a ρ̄ such that for all the possi-
ble traces π = 〈(s0, a1), . . . , (sn−1, an)〉 that end up in state
sn, we have ρ̄(s0, . . . , sn) = ρ(sn).

For further clarity, in Figure 3 is depicted the DFA cor-
responding to a generic ϕ(s,a). Then, we can convert the
NMRDP Mnmr into an equivalent MDP Me using a con-
struction based on a Mealy machine, as discussed in Sec-
tion 3. The involved Mealy machine is a straightforward
state-less encoding ofR, and it is depicted in Figure 4. Most
importantly, Me has state space Se = S × Qe = S × {q0}
that is isomorphic to the original state space S, given the
fact that Qe is a singleton. This shows two points in favour
of our transducer-based approach: (i) it is able to fully cap-
ture Markovian reward functions, at no cost of additional
states; (ii) it is a significant improvement over the construc-
tion based on DFAs (Brafman, De Giacomo, and Patrizi
2018) (see Theorem 1 in the background section), since it
allows to handle Markovian rewards seamlessly without in-
curring an exponential blow-up of the state space (which in
the DFA-based approach is due to the Cartesian product of
the reward automata Aϕi

).

Capturing reward transducers. Temporal specifica-
tions capture Moore (and Mealy) reward machines. To
see this, consider a Moore reward machine Mo =
〈Q,Σ,R, q0, δ, θo〉. For each q ∈ Q, let Aq be the DFA
〈Q,Σ, q0, {q}, δ〉, and let ϕq = 〈%q〉end with %q a reg-
ular expression that captures the language L(Aq). No-
tice that Mo is captured by the temporal specification
{(ϕq, θo(q))}q∈Q. Mealy reward machines can be captured
as well, since they can be converted into Moore reward ma-
chines. On the other hand, specifications can always be com-
piled into a reward transducer, as discussed in Section 3.
Furthermore, temporal specifications can be more succinct
than Moore (and Mealy) reward machines, as shown in the
following theorem.

Theorem 8. There is a family of non-Markovian rewards
R̄n that admit an LTLf specification of size O(n2) and only
reward machines of size Ω(22n

).

Proof. Consider a set A of at least two actions that an agent
can perform. In addition, the agent can perform an action
e(nd) that marks the end of a sequence of actions, and can
observe a c(ommand). We use a construction from (Kupfer-
man and Vardi 2005), adapted to finite traces in (De Gia-
como and Rubin 2018). The construction consists of the
regular language

Ln = {(A+ e)∗ · e · s · e · (A+ e)∗ · c · s · e+ | s ∈ An}

q0start

s0 ∧ a0/R(s0, a0)

. . .

sN ∧ aM/R(sN , aM)

Figure 4: Mealy reward machine that encodes the Markovian re-
ward function R. It has a unique state with a self-loop for each
domain value of R.

and of its LTLf specification

ϕn =
(
¬cU

(
c ∧
∧n
i=1 ◦i

(∨
a∈A a

)
∧ ◦n+1�e

))
∧

♦
(
e ∧
∧n
i=1

∨
a∈A ◦ia ∧�

(
c→ ◦ia)) .

The construction has two key properties: (i) the size of ϕn
is O(n2), and (ii) the size of the minimum DFA for Ln is
Ω(22n

) (Chandra, Kozen, and Stockmeyer 1981). Consider
now the reward function R̄n that assigns reward 1 to traces in
Ln. Intuitively, we reward the agent to initially perform se-
quences of actions from A with each sequence ended by the
action e, and then, upon seeing the command c, perform a se-
quence s of length n already performed before. The reward
R̄n is captured by the specification (ϕn, 1) which has size
O(n2), and every reward machine for R̄n has size Ω(22n

)
since it is at least as big the minimum DFA for Ln.

Specifying common rewards in logic. It is often the case
that we can represent the same transition-based reward func-
tionRwith much less effort, by specifying a non-Markovian
reward fully specified by a much more intelligible LTLf
formula. For example, consider the Mountain Car envi-
ronment (Moore 1991) a well-known problem in the RL
literature and in the research community. The traditional
transition-based reward function R is usually implemented
using the If-This-Then-That pattern (IFTTT), namely “as
long as the car has not reached the goal, give reward -1.0”.
Such statement in natural language can be formalized into a
temporal specification, whilst being relatively close in terms
of readability to its original formulation. By Theorem 7, we
know we can always represent such reward function with
temporal specifications. The reward function of that envi-
ronment can be represented by the specification (ϕ,−1.0)
where ϕ = ¬♦p and p means the car has reached the goal,
a proposition opportunely extracted from the state space. By
translating the formula into a DFA Aϕ and employing the
compilation into the equivalent MDP as explained in Sec-
tion 2, we make such non-Markovian reward learnable by
classic RL algorithms. Thus, we can specify rewards using
high-level formal specifications, and then compile them au-
tomatically into standard models compatible with solvers.

To pursue the analogy with software engineer-
ing: the “raw” R is binary language, the equivalent
{(ϕ(s,a), R(s, a))}s∈S,a∈A is the decompiled program
in a high-level language, say the C++ language, and the
LTLf formulas are programs written in that language. We
advocate that temporal specifications using proper formal
languages becomes the standard for reward engineering.

6 Monitoring Rewards
In this section, we define monitoring rewards, an extension
of temporal rewards based on the four satisfaction condi-
tions from runtime monitoring on finite traces (De Giacomo
et al. 2014). They provide an additional layer of abstraction
which allows one to focus on one condition ϕ and to assign
different rewards based on how the current trace satisfies ϕ.
Furthermore, in some cases, monitoring rewards allow one
to derive the value of future rewards, giving additional guid-
ance to the learning process.

Example 1. The condition “never p or eventually q” can
be temporarily true, temporarily false, or permanently true.
We can define a monitoring reward that returns 1 when the
condition is temporarily true, −1 when temporarily false,
and 10 when permanently true.

Definition 3. A monitoring reward is a 5-tuple 〈ϕ, r, c, s, f〉
where ϕ is a temporal formula and r, c, s, f are integers; we
call ϕ the reward formula and r, c, s, f the reward values.

When a monitoring reward of the form above is specified,
an agent receives a reward value r (reward) when ϕ is tem-
porarily true in the current partial trace, c (cost) when it is
temporarily false, s (success) when permanently true, and f
(failure) when permanently false. We call each of the for-
mer cases a reward condition. If not stated otherwise, we
assume that r ≥ 0, s ≥ 0, c ≤ 0 and f ≤ 0, as we con-
sider this the natural interpretation of the four conditions. If
multiple monitoring rewards are given at the same time, then
the agent receives the sum of the values computed for each
monitoring reward. We can now formalise the monitoring
reward given in the previous example.

Example 2. Consider the monitoring reward:

〈(�¬p) ∨ (♦q), 1,−1, 10, 0〉.

If p does not hold anytime in the current trace, and the same
holds for q, then the agent receives reward 1. If p does hold
sometimes in the current trace, and q does not hold anytime,
then the agent receives −1. If q holds sometimes in the cur-
rent trace, then the agent receives 10.

We have that exactly one of the reward conditions is true
at any moment, because a formula is either temporarily true,
temporarily false, permanently true, or permanently false in
a trace.

Theorem 9. π |= Jϕ = T K holds for exactly one T from
{temp true, temp false, perm true, perm false}.

Proof. We have that π |= ϕ implies that either π |= Jϕ =
temp trueK or π |= Jϕ = perm trueK, and similarly for the
dual case π 6|= ϕ. Then, the theorem follows from the fact
that either π |= ϕ or π 6|= ϕ.

When the reward condition is permanently true (or false)
in the current trace, the agent will keep receiving the same
reward value. In fact, the reward condition will be perma-
nently true (resp., false) at any future step, and in particular
will not become temporarily true or false.

Theorem 10. For T ∈ {perm true, perm false}, we have
that π |= Jϕ = T K implies ππ′ |= Jϕ = T K for every
trace extension π′—and hence ππ′ 6|= Jϕ = T ′K for T ′ ∈
{temp true, temp false}.

As a consequence of the previous theorem, if we are in-
terested in traces of a fixed length (e.g., episodes in RL), the
total reward value on a trace can be computed as soon as the
reward condition becomes permanently true or false. This
ability can be used to better guide the learning process.

Each monitoring reward (ϕ, r, c, s, f) admits the equiv-
alent dual form (¬ϕ, c, r, f, s), where we negate the for-
mula and swap values for reward and cost, and for suc-
cess and failure. To see the equivalence, it suffices to note
that a ϕ is temporarily/permanently true iff ¬ϕ is temporar-
ily/permanently false.

Theorem 11. Monitoring rewards (ϕ, r, c, s, f) and
(¬ϕ, c, r, f, s) return the same value on every trace.

Monitoring rewards capture LDLf /LTLf specifications as
in (Brafman, De Giacomo, and Patrizi 2018). Specifically, a
specification (ϕ, r) can be restated as the monitoring reward
(ϕ, r, 0, r, 0). What is less obvious is that each monitoring
reward can be expressed as a set of four LDLf specifications.
In fact, the four reward conditions can be directly expressed
in LDLf without any meta-logical machinery (De Giacomo
et al. 2014).1 So a reward (ϕ, r, c, s, f) can be restated as a
set of specifications {(ϕr, r), (ϕc, c)(ϕs, s), (ϕf , f)}.

Since LDLf rewards capture monitoring rewards, we can
turn an NMRDP with monitoring rewards into an equiva-
lent MDP using the extended MDP construction based on
DFAs (Brafman, De Giacomo, and Patrizi 2018). We argue
that this construction introduces an unnecessary state over-
head in the case of monitoring rewards. In fact, the formulas
ϕr, ϕc, ϕs, ϕf (and also ϕ) admit shape-equivalent DFAs,
as an immediate consequence of Theorem 3 and Corol-
lary 1 of (De Giacomo et al. 2020). Thus, the corresponding
Moore reward machines can be combined into a single ma-
chine by taking the direct sum—see Section 3. In particular,
the resulting reward machine has the same number of states
as the DFA forϕ, and hence we have the same state overhead
of a simple reward specification (ϕ, rϕ).

Example 3. Consider the monitoring reward:

〈•(aU b), r, c, s, f〉.

In Figure 5 we show the equivalent Moore reward machine.
This is the result of a direct sum between 4 Moore machines,
where each of them models one condition at a time. The
conditions are highlighted with different colors per state.

As a result, monitoring rewards introduce no additional
state overhead compared to simple temporal rewards.

Theorem 12. If an NMRDP 〈S,A, Tr, (ϕ, rϕ)〉 admits an
equivalent MDP which introduces a state overhead n, then
every NMRDP of the form 〈S,A, Tr, (ϕ, r, c, s, f)〉 admits
an equivalent MDP which introduces state overhead n.

1Note that we need LDLf and not simply LTLf because we need
to represent prefixes of traces.

q0, rstart q1, r

q2, c

q3, s

q4, fa ∧ ¬b

true

true

true

a ∧ ¬b

b

¬a ∧ ¬b
b

¬a ∧ ¬b

Figure 5: Moore machine for 〈•(aU b), r, c, s, f〉. States are
color-coded based on the condition they monitor: purple for
temp true , yellow for temp false , green for perm true , and red
for perm false .

7 Applications in RL
One field that can benefit from the approach described is Re-
inforcement Learning. Indeed, most RL algorithms assume
the underlying hidden model to be an MDP. Hence, the ap-
proach described in the previous sections can be very useful
for RL. The idea is that we can give a specification at a high
level of abstraction on how to give rewards. The rewards are
then given by the induced reward transducer, as explained
earlier in this work. Moreover, being the overhead the small-
est possible, algorithms on such MDPs are more effective.

Reward engineering is a very crucial task when devis-
ing RL domains. The specification of reward functions can
be cumbersome and error-prone, breaking RL algorithms
in surprising, counterintuitive ways. This phenomenon is
known in the community as reward hacking (Amodei et
al. 2016). An illustrative example is shown in (Clark and
Amodei 2016). Here, we propose that the experiment de-
signer can specify monitoring of temporal specification to
have a finer control on the reward given to the agent, despite
having a concise, human-friendly language like LTLf /LDLf .
We argue that is more convenient to think in terms of moni-
toring rewards of the form (ϕ, r, c, s, f) than temporal spec-
ifications of the form (ϕ, r).

In Figure 6 is depicted the scenario we have in mind. The
world states are described by propositional features. The
agent acts in an environment and observes such features to
take the next action. Each observation is passed to a monitor
that interpret the observation, updates its state and produces
a reward signal that is then given to the agent. In this way,
the agent’s behaviour is implicitly driven by the monitor via
rewards, specified at high-level by the designer. In the rest
of this section, we will describe potential applications of our
approach.

Mountain Car. The Mountain Car environment (Moore
1991) is a classic RL problem. The state space is the set
of pairs 〈position, velocity〉. A reward of −1 is given at
each timestep. The goal state is when position ≥ 0.5. We
model the reward function with a monitoring temporal spec-
ification (♦goal , 0,−1, 0, 0), where goal is a fluent that is
true when (position ≥ 0.5), false otherwise. The training is
performed over the extended MDP, where the state space is

Figure 6: An RL scenario with monitoring rewards.

q0start

q1

¬goal/c

goal/s

true/s

(a) ♦goal

q0start

q1

¬failure/r

failure/f

true/f

(b) �¬failure

q0start

q1 q2

¬cliff ∧ ¬goal/c

goal/s cliff /f

true/s true/s

(c) ¬cliff U goal

Figure 7: In (a) the Mealy reward machine for (♦goal , r, c, s, f),
in (b) the Mealy reward machine for (�¬failure, r, c, s, f), and
in (c) the Mealy reward machine for (¬cliff U goal , r, c, s, f).

the cross product between the original MDP state space and
the Mealy reward machine, shown in Figure 7a. Notice that
the reward assignment is completely handled by the frame-
work, according to the current simulation of the machine, in
a given episode. Specifications of the form ♦p, when p is a
state formula, are useful to capture achievement goals, i.e. a
condition that must be satisfied in the future, before the end
of the trace.

Cart Pole. In the Cart Pole environment (Barto, Sutton,
and Anderson 1983), the goal is to prevent a pendulum
from falling over. The state space is the set of tuples
〈position, velocity , pole angle, pole velocity〉. A reward
signal of +1 is given at each time step. The failure states are
the ones satisfying |pole angle| ≥ 12◦ or |position| ≥ 2.4.
We model the reward function with a monitoring temporal
specification (�¬failure,+1, 0, 0, 0), where failure is true
in failure states. The associated Mealy reward machine is
shown in Figure 7b. Specifications of the form �q, when q is
a state formula, are useful to capture maintenance goals, i.e.,
conditions that must be satisfied until the end of the trace.

Cliff Walking. A task that is both achievement and main-
tenance is the approach-avoid task, expressed by the for-
mula ¬failure U goal . An instance of such task is the Cliff

Walking environment in Ch. 6 of (Sutton and Barto 2018).
In this kind of gridworld, the reward is -1 on all transi-
tions except those into a special region at the bottom of
the grid, representing “the cliff”. Stepping into this region
incurs a reward of -100 and makes the simulation to fail.
The goal is to reach a specific goal state, whereas the cliff
region constitutes the set of failure states. Such reward
function can be captured by the monitoring specification
(¬cliff U goal , 0,−1,+1,−100). Other examples of envi-
ronments that can be modeled in the same way are Frozen
Lake (OpenAI 2016), the 4x3 world in Ch. 21 of (Rus-
sell and Norvig 2010), and WaterWorld domain (Karpathy
2015).

Taxi domain. In the Taxi domain (Dietterich 2000) there are
4 locations and the goal is to pick up the passenger at one lo-
cation (the taxi itself is a possible location) and drop him off
in another. The reward is +20 points for a successful drop-
off, and -1 point for every timestep it takes. There is also
a -10 reward signal for illegal pick-up and drop-off actions.
The goal state is when the passenger is dropped off at the
right place. We can model the Taxi problem as a sequence
task: (♦(p ∧ ♦q), 0,−1,+20, 0), where p means “pick up
the passenger” and q means “drop-off the passenger to the
right location”. The bad action penalty is another temporal
specification (♦bad action,−10, 0, 0, 0). Although we use
two temporal specification, we remind that both get com-
piled into a more compact single Mealy reward machine.
Other RL environments that have sequential tasks are the
Minecraft environment (Andreas, Klein, and Levine 2017),
the task to break columns in order in Breakout or to visit
colors in Sapientino (De Giacomo et al. 2019).

8 Conclusions
In this work we have formalised the notion of overhead
as the state extension introduced to describe an NMRDP
in the form of an MDP. We have considered the overhead
introduced by approaches that directly use the DFAs for
the reward formulas (Brafman, De Giacomo, and Patrizi
2018), and argued that part of that overhead is unnecessary
if we are not interested to know which reward specifications
are accountable for the rewards assigned at any given mo-
ment. We have shown that, giving up that information, ap-
proaches based on reward machines can build exponentially
(in fact factorially) smaller extended MDPs, while never do-
ing worse than direct use of DFAs. We have argued that the
temporal logics LDLf /LTLf are an appropriate language to
specify rewards, and then extended temporal specifications
to monitoring specifications, which build on the four clas-
sic monitoring conditions allowing a reward designer to as-
sign rewards based on temporary/permanent satisfaction of a
temporal formula. We have shown how transducer-based ap-
proaches allow for implementing monitoring specifications
at no extra cost compared to reward specifications; in other
words, the extension from one condition to four conditions
comes for free. Finally, we have applied monitoring rewards
to reinforcement learning, showing how they can be used to
capture the reward functions of popular RL environments.

Acknowledgments
Work supported in part by European Research Council un-
der the European Union’s Horizon 2020 Programme through
the ERC Advanced Grant WhiteMech (N. 834228) and the
AI4EU project (N. 825619), and in part by Sapienza Uni-
versity of Rome through the Project DRAPE: Data-awaRe
Automatic Process Execution.

References
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe reinforcement learn-
ing via shielding. In AAAI, 2669–2678.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P. F.;
Schulman, J.; and Mané, D. 2016. Concrete problems in
AI safety. CoRR abs/1606.06565.
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular multi-
task reinforcement learning with policy sketches. In ICML,
166–175.
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. In AAAI, 1160–1167.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1983. Neu-
ronlike adaptive elements that can solve difficult learning
control problems. IEEE Trans. Syst. Man Cybern. 13:834–
846.
Bauer, A.; Leucker, M.; and Schallhart, C. 2010. Compar-
ing LTL semantics for runtime verification. J. Log. Comput.
20(3):651–674.
Brafman, R. I.; De Giacomo, G.; and Patrizi, F. 2018.
LTLf/LDLf non-Markovian rewards. In AAAI, 1771–1778.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2017. Decision-making with non-Markovian rewards: From
LTL to automata-based reward shaping. In RLDM, 279–283.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano,
R. A.; and McIlraith, S. A. 2019. LTL and beyond: Formal
languages for reward function specification in reinforcement
learning. In IJCAI, 6065–6073.
Chandra, A. K.; Kozen, D.; and Stockmeyer, L. J. 1981.
Alternation. J. ACM 28(1):114–133.
Clark, J., and Amodei, D. 2016. Faulty reward functions in
the wild. https://openai.com/blog/faulty-reward-functions/.
Accessed: 15-03-2020.
De Giacomo, G., and Rubin, S. 2018. Automata-theoretic
foundations of FOND planning for LTLf and LDLf goals. In
IJCAI, 4729–4735.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI,
854–860.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on finite traces. In IJCAI, 1558–1564.
De Giacomo, G., and Vardi, M. Y. 2016. LTLf and LDLf
synthesis under partial observability. In IJCAI, 1044–1050.
De Giacomo, G.; De Masellis, R.; Grasso, M.; Maggi, F. M.;
and Montali, M. 2014. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In BPM, volume
8659 of Lecture Notes in Comput. Sci., 1–17.

De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi,
F. 2019. Foundations for restraining bolts: Reinforce-
ment learning with LTLf/LDLf restraining specifications. In
ICAPS, 128–136.
De Giacomo, G.; De Masellis, R.; Maggi, F. M.; and Mon-
tali, M. 2020. Monitoring constraints and metaconstraints
with temporal logics on finite traces. CoRR abs/2004.01859.
Dietterich, T. G. 2000. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. J. Artif.
Intell. Res. 13(1):227–303.
Gretton, C. 2007. Gradient-based relational reinforce-
ment learning of temporally extended policies. In ICAPS,
168–175.
Gretton, C. 2014. A more expressive behavioral logic for
decision-theoretic planning. In PRICAI, volume 8862 of
Lecture Notes in Comput. Sci., 13–25.
Karpathy, A. 2015. REINFORCEjs: WaterWorld
demo. https://cs.stanford.edu/people/karpathy/reinforcejs/
waterworld.html. Accessed: 15-03-2020.
Kupferman, O., and Vardi, M. Y. 2005. From linear time to
branching time. ACM Trans. Comput. Log. 6(2):273–294.
Lacerda, B.; Parker, D.; and Hawes, N. 2014. Optimal and
dynamic planning for markov decision processes with co-
safe LTL specifications. In IROS, 1511–1516.
Lacerda, B.; Parker, D.; and Hawes, N. 2015. Optimal
policy generation for partially satisfiable co-safe LTL speci-
fications. In IJCAI, 1587–1593.
Linz, P. 2006. An introduction to formal languages and
automata. Jones and Bartlett Publishers.
Littman, M. L.; Topcu, U.; Fu, J.; Jr., C. L. I.; Wen, M.;
and MacGlashan, J. 2017. Environment-independent task
specifications via GLTL. CoRR abs/1704.04341.
Littman, M. L. 2015. Programming agent via rewards. In-
vited talk at IJCAI.
Ly, L. T.; Maggi, F. M.; Montali, M.; Rinderle-Ma, S.; and
van der Aalst, W. M. P. 2013. A framework for the system-
atic comparison and evaluation of compliance monitoring
approaches. In EDOC, 7–16.
Mealy, G. H. 1955. A method for synthesizing sequential
circuits. Bell Syst. 34:1045–1079.
Moore, E. F. 1956. Gedanken-experiments on sequential
machines. Automata Studies 129–154.
Moore, A. W. 1991. Variable resolution dynamic program-
ming. In ML91, 333–337.
OpenAI. 2016. Frozenlake-v0. https://gym.openai.com/
envs/FrozenLake-v0/. Accessed: 30-06-2020.
Pnueli, A. 1977. The temporal logic of programs. In FOCS,
46–57.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley.
Quint, E.; Xu, D.; Dogan, H.; Hakguder, Z.; Scott, S.; and
Dwyer, M. B. 2019. Formal language constraints for markov
decision processes. CoRR abs/1910.01074.
Rabin, M. O., and Scott, D. S. 1959. Finite automata and
their decision problems. IBM J. Res. Dev. 3(2):114–125.

https://openai.com/blog/faulty-reward-functions/
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://gym.openai.com/envs/FrozenLake-v0/
https://gym.openai.com/envs/FrozenLake-v0/

Russell, S. J., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Pearson Education.
Slaney, J. K. 2005. Semipositive LTL with an uninterpreted
past operator. L. J. IGPL 13(2):211–229.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book.
Thiébaux, S.; Gretton, C.; Slaney, J. K.; Price, D.; and
Kabanza, F. 2006. Decision-theoretic planning with non-
Markovian rewards. J. Artif. Intell. Res. 25:17–74.
Toro Icarte, R.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In ICML,
2107–2116.
Toro Icarte, R.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M.; and McIlraith, S. 2019. Learning reward machines
for partially observable reinforcement learning. In NIPS,
15523–15534.

	Introduction
	Background
	Reward Transducers
	Extending MDPs via Reward Transducers
	Rewards as Temporal Specifications
	Monitoring Rewards
	Applications in RL
	Conclusions

